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Use of prior knowledge with regard to the number of compo-
nents in an image or NMR data set makes possible a full analysis
and separation of correlated sets of such data. It is demonstrated
that a diffusional NMR microscopy image set can readily be
separated into its components, with the extra benefit of a global
least-squares fit over the whole image of the respective diffusional
rates. As outlined, the computational approach (CORE process-
ing) is also applicable to various multidimensional NMR data sets
and is suggested as a potentially powerful tool in functional
MRI. © 1998 Academic Press

General problems in spectroscopy and image processing are
to achieve a separation of component spectra or images and to
cope with noisy data. However, one often experiences a situ-
ation where the number of components in the underlying data
is actually known beforehand. In case of correlated sets of data,
one also often knows the functional form of the intensity
variation of a particular component within the data set. Prior
knowledge of this kind makes possible a full analysis of such
data sets. The present communication specifically deals with
diffusion images in NMR microscopy, but the principles are
general and applicable to a larger family of data types, as
further discussed below.

A spectroscopic diffusion measurement on a sample withn
components, using the Hahn echo (1) and the FT-PGSE tech-
nique, is fully describable by a sum ofn Stejskal–Tanner
exponentials [1] (2, 3),

Atot~2t! 5 O
i51,n

Ai~0!exp~22t /T2i!

3 exp~2Di~ggd!2~D 2 d/3!!. [1]

Here the symbols have their usual meaning. It is important
to note that theDi-values are global to the data set and that
therefore (under the condition of a fixed value oft) Eq. [1]
holds for any frequency in the spectrum. In other words, a
given component bandshape will remain constant for all
gradient settings of the FT-PGSE experiment (3, 4). This is
the actual prior knowledge needed for separating such data
into its components—i.e., the bandshapes (described by the
respectiveAi(0)-values at different frequencies) and the dif-
fusion coefficients (Di) of the constituents. A global analysis
using such a strategy will also provide the best possible
estimate of the diffusion coefficients of the components,
since all available information will be accounted for. In
practice, this will be a signal-averaging process where data
for a large number of frequency channels are added. As a
consequence, the effective signal/noise ratio of the experi-
ment will increase in comparison with a simple peak height
fitting analysis— generally by an order of magnitude or
more.

Following the original qualitative suggestion of the po-
tential use of FT-PGSE based “size-resolved NMR” (3, 4),
several quantitative strategies for achieving the desired
global analysis of such spectroscopic data have been de-
scribed. These include the use (5) of a coupled inverse
Laplace transform (ILT) approach name SPLMOD (6, 7),
the use and development of multivariate statistical methods
like NIPALS (8) and GRAM, DECRA (9, 10) and others
similar (11) and also of a more general and direct (but very
computer-intensive) global least-squares approach, named
CORE (component-resolved spectroscopy) (12, 13). In con-
trast to the latter methods, SPLMOD only partly accounts

FIG. 1. The six 5-mm NMR samples inside a 20-mm tube containing water. The image intensity displays are autoscaled with respect to the intensities within
the individual image. (a) The full data set. The sample compositions are: (1) HDO in D2O, (2) PEO 3400 in D2O, (3) PEO 400 in D2O, (4) PEO 4001 PEO
3400 in D2O, (5) PEO 4001 HDO in D2O, (6) PEO 34001 HDO in D2O (see text). (b) CORE fitted data using Eq. [1] with three components, after numerical
elimination of the water signal between the tubes. (c) Component No. 1, D5 1.8 10210 m2 s21 (“PEO 400”). (d) Component No. 2, D5 1.7 1029 m2 s21

(“HDO”). (e) Component No. 3, D5 1.8 10211 m2 s21 (“PEO 3400”). (f ) The difference map.
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FIG. 1—Continued
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FIG. 1—Continued
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for the information contained in the data set, since it can
only deal with one limited frequency region at a time. When
applying the multivariate methods mentioned, one con-
cludes that all “components” have been found, when just
noise remains. In a CORE analysis one instead tests models
of increasing complexity (in the present application: more
terms in Eq. [1]), unless the number of components is
known beforehand.

A 2D-like display mode name DOSY (diffusion ordered
spectroscopy) of processed multicomponent FT-PGSE data has
also been introduced by Morris and Johnson (5) (chemical shift
( x) vs diffusion coefficient (y) and intensity (z)). It has
become quite popular and has been extended to 3D data, using
a combination of the FT-PGSE experiment with various mul-
tidimensional NMR techniques like COSY, NOESY, and
HMQC, primarily for the purpose of separating the bandshapes
of different components in a mixture (14–16). It is important to
note, however, that presently the vast majority of DOSY-like
applications are not normally based on aglobal analysis ap-
proach of the previously mentioned kind, but rather on (inter-
polated) contour plots (or similar) ofunrelatedsingle-channel
data.

NMR microscopic images constitute a special form of
multidimensional spectral data sets, but the basic data
analysis problem is the same. In the present paper we
describe how NMR PGSE-based diffusion images can be
efficiently analyzed using the prior knowledge that the
intensity of each component in each pixel is fully described
by Eq. [1].

Figure 1a illustrates the first slice of a phased absorption-
mode PGSE image set, recorded at increasing gradient set-
tings ranging from 0 to 96 G/cm, in 16 equidistant steps,
usingd 5 2 ms andD 5 50 ms. The sample consisted of six
5-mm NMR tubes, immersed in normal water (for shimming
purposes) in a 20-mm tube. The measurements were made at
room temperature and 200 MHz in a vertical superwide-bore
magnet. The samples (see Fig. 1) contained various combi-
nations of (a) doped water, (b) PEO, (poly(ethylene oxide)),
Mw 5 400, and (c) PEO, Mw 3400, all dissolved in heavy
water to a total concentration of 10 –20%.

The raw experimental data (sixteen 128 * 128-pixel im-
ages) were then transformed row by row into sixteen “lin-
ear” data sets, each of length 16,384. Then, the more intense
water background was removed by numerical selection, in
order to limit the analysis to the actual samples in question.
Unfortunately, this procedure did not work completely—
there remains some “outer water” near the walls of the
tubes, and particularly near the right-hand side of the image.
This did not significantly disturb the analysis, however. The
samples contain three components in total, so the trans-
formed 16 * 16K data set was then simply fitted by the
normal CORE procedures (12, 13) to Eq. [1], usingn 5 3,
and then reassembled for display (Figs. 1b–1f ). As seen, the
procedure correctly finds the presence of the different com-
ponents in the samples as well as their (global)D-values. By

normal spectroscopic FT-PGSE all image diffusion data
were confirmed and match almost perfectly.

It should be noted that traces of HDO were also naturally
present in samples did not contain any added doped water. This
shows up as a weak background signal (assigned to component
2) in all six tube images. Also, the results for “PEO 400”
definitely look erroneous at first inspection—it shows up as
component 3 in tube 4, rather than component 1. However,
PEO 400 actually diffuses at a very much lower rate in this
quite concentrated mixed PEO 400/PEO 3400 sample. Its
diffusion rate is lowered about a factor of 10 from its “normal”
aqueous solution value and is very close to that of PEO 3400.
This was specially checked by spectroscopic FT-PGSE.

With regard to related image processing problems one
should note that (i) the effectiveS/N of the experiment
increases quite extensively by using this global data analysis
approach, and (ii) when using the direct CORE least-squares
analysis (rather than any of multivariate methods men-
tioned) one is not limited to exponential functional relations
between the images in a set (like in Eq. [1]). CORE pro-
cessing can be made with any functional form. One obvious
candidate for further application is functional MRI, where a
brain image is monitored under conditions of “on” or “off ”
of a certain stimulus. Subtle intensity changes result in
certain areas of the brain images under on/off conditions.
Some time-shifted and modified square-wave or cosine-like
burst response may be expected to model this behaviour in
CORE processing, and the matching image region will stand
out in the displayed results. Work along such lines is in
progress. Of course, the outlined computational procedure is
directly applicable also to many types of multidimensional
NMR data sets, where the component bandshapes remain
constant with the experimental parameter(s), and the func-
tional form of the bandshape intensity variation is known. A
CORE-like global analysis using this prior knowledge,
rather than making interpolated contour plots on unrelated
data, allows extraction of the full information content of the
experiment.
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